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The Derrida-Gervois-Pomeau composition of the sequencesQ* is a topological conjugate compression
operation. On the basis of the numerical calculation for the quadratic mapf l(x)512lx2, it is found thatQ*
has the uniform compression ratiod21~Q!, i.e., the reciprocal of the universal convergent rate. A series of
global scaling behaviors relating to the periodic windows, the window bands, and the steps of equal topological
entropy class~ETEC! are revealed to be independent of the sequences. In particular, the geometric interpreta-
tion for the Yorke-Grebogi-Ott-Tedeschini-Lalli normalized crisis value of ‘‘windows’’mc5

9
4 is given clearly

through the scaling for the ETEC steps. The universal positions of superstable points in all the periodic
windows are determined by the window scaling ratiosgPDB51 for the period-doubling bifurcation~PDB!
sequences andgN5

1
3 for the non-PDB sequences. The approximate analytic formula of the chaotic measure is

obtained by employing the convergent ratesd of periodic sequences. The singularity spectrum and the gener-
alized fractal dimension of the chaotic set are also calculated. These results imply that the metric universality
of the periodic sequences may be a very good complete description for the topological space of two symbols.
@S1063-651X~96!05609-7#

PACS number~s!: 05.45.1b, 03.20.1i, 05.20.Gg, 05.70.Jk

I. INTRODUCTION

The discovery of metric universalities is a milestone of
nonlinear science@1#. These metric universalities originate
from the generalized Feigenbaum renormalization-group
equation and its eigenvaluesd. Recently, we found the dev-
il’s staircase of topological entropy in the interval dynamics
@2–4#, which has cleared the concept of topological equiva-
lence class, i.e., the step of equal topological entropy class
~ETEC! generated by the topological conjugate operationQ*
of Derrida, Gervois, and Pomeau@5,6# @see Sec. II A for the
definition of the Derrida-Gervois-Pomeau~DGP! * composi-
tion rule#. On the basis of this, we further reveal in this paper
some global and fine regularities and deepen the understand-
ing of the universal constantd: d~Q! reflects not only the
convergent rate for the period-p-tupling bifurcationQ*n ~p
is the period of sequenceQ! but also, more important, the
compression ratio of the topological conjugate operationQ* .
In general, we can define the compression ratioh~Q! of the
topological conjugate operationQ* as

uQ* @W1 ,W2#u5h~Q!u@W1 ,W2#u, ~1.1!

whereQ* @W1, W2#[@Q*W1, Q*W2# and u u is the paramet-
ric metric or norm for the set of words~sequences! @2–4#,
i.e., u@W1,W2#u[l~W2!2l~W1!, with l~W1! andl~W2! two
parameter values corresponding to the characteristic words
that denote the boundaries~the minimalW1 and the maximal
W2! of the set of words considered. It is known that the

parameter valuesl~W! andl~Q*W! can be calculated by the
Kaplan algorithm@7#, which is the standard method of ap-
plying the operation of contracting fixed point on the param-
eter axis for arbitrary periodic wordsW andQ. Because of
the property of accumulation and contraction of* operation
@5,6#, the normu u will be contracted with the word changing
fromW1,2 toQ*W1,2 and simultaneously with the increasing
of the length of word, so we always haveh~Q!,1; thus~1.1!
reflects the compression effect ofQ* operation in thel pa-
rameter space. For the quadratic mapf l(x)512lx2, h~Q!
takes the simple form

h~Q!5d21~Q! ~1.2!

with a high precision. Because of the simplicity of~1.2!, we
will take the quadratic mapf l(x)512lx2 as the actual
metric model in this paper.

The devil’s staircase of topological entropy indicates that
there are two important intervals: one is of zero entropy cor-
responding to the main period-doubling bifurcation~PDB!
cascade sequencesR*n and the other is of nonzero entropy
corresponding to other sequences exceptR* n. Our research
here indicates further that in these intervals there still exist
the following three kinds of characteristic intervals and their
corresponding global scaling phenomena:~i! the periodic
window l W~Q!, ~ii ! the window bandlWB~Q!, and ~iii ! the
ETEC stepl h~Q!. Each of these three characteristic intervals
is formed by the same topological conjugate compression
operationQ* , but for the different characteristic boundary
sequences. Thus we will have a series of characteristic con-
stants to describe the global scaling behaviors. Among these
characteristic constants, the ETEC step scaling constantmc5
9
4 should be emphasized, which is justthe normalized crisis
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value of ‘‘windows’’ found by Yorke, Grebogi, Ott, and
Tedeschini-Lalli@8#; however, at that time, they did not give
an accurate interpretation; we will present the clear geomet-
ric meaning. We also obtain two different window scaling
ratios, i.e.,gPDB51 for the PDB cascade sequences andgN5
1
3 for the non-PDB sequences, which determine the universal
positions of superstable points in all the periodic windows.
These scaling constants fully reflect the property of the uni-
form compression ofQ* operation on the whole parameter
axis.

As an interesting result of the uniform compression, the
width l W of the periodic window is proportional to the com-
pression ratiod21, the reciprocal of the convergent rate; for
some specific maps such as the quadratic map,l W can even
be normalized to unity byd21. This is an important global
scaling phenomenon, which leads to a significant and ana-
lytic formula: the chaotic measure describing the irregularity
highly unifies the universal convergent rates describing the
periodic regularity. This is the final aim of this paper; it
provides analytic evidence for the problem that chaos has a
positive measure@9,10#.

In this paper we will first introduce the notation and some
basic concepts in Sec. II. In Sec. III we discuss the global
scaling behaviors and present the universality for the posi-
tions of the superstable points in all the periodic windows. In
Sec. IV the approximate analytic formula of the chaotic mea-
sure is obtained by employing the convergent rates of the
periodic sequences. In Sec. V we calculate the singularity
spectrum and the generalized fractal dimension of the cha-
otic set, which are improved compared to those in Ref.@4#.
Finally, in Sec. VI we give a short discussion.

II. NOTATION AND BASIC CONCEPTIONS

A. DGP * composition rule and ETEC

From the symbolic dynamics@10–12# it is known that an
orbit can be described by a kneading symbolic sequence
~word! K5K1K2 •••Kk •••:

Ki5H LC
R

for f l
i H ,0

50

.0,

i51,2, . . . ,k, . . . . ~2.1!

As a convention, an aperiodic sequence of infinite length is
usually called an infinite word, while a periodic sequence
K5(K1K2 •••Kk)

` of period k, with the repeating byte
K1K2 •••Kk of finite length as its characteristic, is called a
finite word, which is usually represented by its repeating
byte, i.e.,K5K1K2 •••Kk . In particular, a periodic sequence
with a symbolC is referred to as a superstable periodic se-
quence ~word! @10# or Metropolis-Stein-Stein~MSS! se-
quence@11#.

Now we introduce the DGP* composition rule@5#. Let
two superstable periodic sequences beQ5Q1Q2 •••QqC and
S5S1S2 •••SsC. Then thei th symbolPi of the compound
sequenceP5Q*S can be written as@13#

Pi5H Qj if i mod ~q11!5 jÞ0

Sk
t~Q! if i5k~q11!

C if i5~q11!~s11!,

~2.2!

where t is the parity inverse operator defined byLt5R,
Rt5L, and t(Q)5tJ(Q), with J~Q! the R-parity number of
sequenceQ ~the number of appearances of the symbolR in
Q!. It is obvious thatt2n115t, t2n5I ; here I denotes the
identity operator.

In Refs. @2# and @3# we have proved that the DGP com-
position Q* of arbitrary superstable periodic sequences
~MSS sequences! is a topological conjugate operation that
preserves the topological entropy; namely, independent of
whateverW is ~WPW, the set of all admissible sequences
with the minimal L` and the maximalRL`!, an ETEC
Q*W[$Q*WuWPW% is formed under this operation, with a
constant topological entropyh~Q!. We have also obtained
that the composition operatorQ* compresses the space
[L`,RL`] of all admissible sequences to an ETEC that ex-
hibits a step in the entropy ploth2l, with the width ~Le-
besgue measure! l h~Q!5uQ* [L`,RL`] u.

B. Periodic window and convergent rate

We call such three periodic sequences
(ALt(A),AC,ARt(A)) in the ascending order a periodic win-
dow labeled byA, whereAC[~AC!` denotes the super-
stable periodic sequence andALt(A)[(ALt(A))`5A* L` and
ARt(A)[(ARt(A))`5A*R` are called the lower and the up-
per sequences@12,14# of AC, respectively. On the parameter
axis, the parameter values corresponding to the window se-
quences are denoted by (l l ,lc ,l r). As both the lower and
the upper sequences correspond to the parameter intervals,
from now on we shall specially denotell and lr as the
parameter values of the left and the right boundaries of the
window that satisfy the stability conditionuP i f l8(xi)u51.
Thus the width of the periodic window of sequenceA on the
parameter axis is

l W~A!5u@ALt~A!,ARt~A!#u5uA* @L`,R`#u

[l r~A!2l l~A!. ~2.3!

For the period-p-tupling bifurcation sequenceA*n ~p is
the period ofA! @12,15#, it is well known that the widths of
adjacent windows, or the distances between the superstable
points, form the universal convergent rated~A! for any one-
dimensional maps of quadratic maximum, i.e.,

d~A!5 lim
n→`

l W~A* n!

l W~A* ~n11!!
5 lim

n→`

l r~A*
n!2l l~A*

n!

l r~A*
~n11!!2l l~A*

~n11!!

~2.4!

or

d~A!5 lim
n→`

lc~A*
~n11!!2lc~A*

n!

lc~A*
~n12!!2lc~A*

~n11!!
. ~2.5!

The two definitions~2.4! and ~2.5! are equivalent in the nu-
merical calculations. They are not only two convergent sub-
sequences that approach the same accumulation point
l~A*`!, as told by Feigenbaum@1#, Hao@12#, and Chang and
McCown @15#, but also the important result of uniform com-
pression. In the numerical calculations,~2.5! is more conve-
nient becauselc is very easy to compute by the word-lifting
technique@12#.
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C. Window band

The window band of sequenceA refers to the total of the
windows ofA and all the associated Feigenbaum~PDB cas-
cade! sequences of the formA*R*

n with n51,2, . . . .These
windows are connected on the parameter axis, which means
that the upper sequence of any window in the window band
coincides with the lower sequence of the next adjacent win-
dow, leaving no room for other sequences to get in between,
i.e., lr~A*R*

n!5ll~A*R*
(n11)! holds from~2.3!. The win-

dow band is the result that the operationA* compresses the
whole connected region of the main PDB cascadeR* n into
the chaotic region. Noting that the sequencesA*R*

n have
the same convergent rated(R)54.66920••• as the main
PDB sequences R* n @16,17#, i.e., l W~A*R*

n!/
l W~A*R*

(n11)!→d(R), therefore, on the parameter axis, the
width of the window band is

lWB~A!5 (
n50

`

l W~A*R* n!5uA* @L`,R* `#u

' l W~A! (
n50

`

d2n~R!5
l W~A!

12d21~R!
. ~2.6!

The width lWB of the window band will play an important
role later in the calculation of the chaotic measure.

D. Self-similar structure in the chaotic region

To compute the chaotic measure in Sec. IV we need to
study the total widthLWB

t of all the periodic windows~win-
dow bands!. This requires the knowledge about the structure
of the chaotic region.

In the bifurcation diagram, we can classify thebasicpe-
riodic and quasiperiodic sequences in Fig. 1 according to the
MSS order@11# and the structural similarity of sequences.
The chaotic regionDc5[R* `,RL`] can be divided into a
series of subintervalsDm5[R* (m11)

*RL
`,R*m*RL

`] ~m
50,1,2, . . . !; the set of the basic periodic and quasiperiodic
sequences corresponding to each subintervalDm is denoted
as `m . The widths of subintervals are obviously the
convergent series uD0u,uD1u,uD2u, . . . ,uDmu, . . . satisfying
limm→`uDmu/uDm11u5d(R).

The MSS primitive words that cannot be decomposed by
the DGP* composition rule are of most significance for our
calculation. The set of all primitive words of period greater

than or equal to 3 is denoted bỳp . All these primitive
words are located in the subintervalD0. Except the primitive
words, there are also the compound sequences~words! of the
form Q1*R*

n1* •••*Qk*R*
nk*Qk11 in D0; thus

`05$Q,Q1*R*
n1* •••*Qk*R*

nk*Qk11uQP`p ,QkP`p ;

k>1, nkPZ1%, ~2.7!

where Z1 is the set of positive integers. Obviously, the
various possible combinations, such asQ* j ,
Q1
* j 1*R* n1* •••*Qk

* j k, are included iǹ 0. It should be indi-
cated that though there are also the associated Feigenbaum
PDB sequencesA*R*

n ~AP`0, n>1! in the subintervalD0,
we do not include them iǹ 0 since we only need the basic
sequencesA to calculate the window band sequencesA*R*

n

from ~2.6!. For other subintervalsDm with m>1, we have

`m5R*m*`0 . ~2.8!

Therefore, the set of all the basic MSS sequences~periodic
and quasiperiodic! except the main PDB sequencesR* n and
the associated PDB sequencesA*R*

n is

`5 ø
m50

`

`m . ~2.9!

The structure of each subintervalDm is completely similar
and the cardinal of each set`m is also the same. The differ-
ence betweeǹm11 and`m is only a compression mapR* .
So when considering the chaotic measure we shall concen-
trate mainly on the treatment of the set`0 in D0; other sets
`m in Dm ~m>1! can be treated immediately from the simi-
larity.

III. GLOBAL SCALING BEHAVIORS
AND UNIVERSAL SUPERSTABLE POSITIONS

IN PERIODIC WINDOWS

A. Window-d relation

We know from~2.3! and~2.4! that the definitions for the
window widths l W~Q! of the periodic sequencesQ and the
convergent ratesd~Q! of the period-p-tupling bifurcations
Q*n are, respectively,

l W~Q!5uQ* @L`,R`#u5h~Q!u@L`,R`#u,

d~Q!5 lim
n→`

uQ* n* @L`,R`#u
uQ* ~n11!* @L`,R`#u

.

Through the numerical calculation for the quadratic map
f l(x)512lx2, we find that there exists a very simple in-
verse proportion relation between them~see Table I!, i.e.,

l W~Q!5d21~Q!, ~3.1!

which holds approximately with at least two significant fig-
ures. This implies the important concept that the DGP com-
positionQ* for any sequenceQ is a compression operation
@3# with the uniform compression ratiod21~Q!. It will play
an important role in the calculation of the chaotic measure.
The relation ~3.1! is consistent with~1.1!, because from

FIG. 1. Schematic diagram for the self-similar classification of
the basic sequences.
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~1.1!, l W~Q!5d21~Q!u[L`,R`] u, while l~L`!521
4 and

l~R`!53
4 results in thatu[L`,R`] u51. If we rewrite ~3.1!

into the form

l W~Q!d~Q!51, ~3.18!

then we can see the obvious scaling effect ofd21~Q!. Obvi-
ously, it is a global relationship independent of the sequences
Q.

For the compound sequences, there is the general approxi-
mationd~Q1*Q2!'d~Q1!d~Q2! @6#, so we have

l W~Q1*Q2!'d21~Q1!d
21~Q2!. ~3.2!

It should be noted thatd~R* n*Q!'dn(R)d~Q! holds for
large n; however, it does not work well forn51. We will
consider the corrections for this in Sec. IV.

B. Scaling behaviors of window bands

1. Scaling coefficient Kf for the window band

From~2.6! and~3.1! the width of the window band can be
written as

lWB~Q!5d21~Q!u@L`,R* `#u[Kfd
21~Q!, ~3.3!

where thetheoreticalvalue of the coefficientKf51.651 15•••
becausel~L`!520.25 andl~R*`!51.401 15••• . Using the
approximation in~2.6!, we can also expresslWB~Q! as

lWB~Q!'
d21~Q!

12d21~R!
. ~3.4!

Of these two expressions,~3.3! is more accurate than~3.4!.
Here we show how to givelWB~Q! with merely the conver-
gent rates in~3.4!. The approximate expression~3.4! implies

that 1/@12d21(R)#51.272 53•••, which is considerably dif-
ferent from Kf in ~3.3! becausel W~Q!/l W~Q*R!'2 @see
d1(R) in Table V# has a large deviation fromd(R), which
will be improved in Sec. IV. Therefore,
1/@12d21(R)#51.272 53••• is an ideal value of Kf , which
requires the uniform convergence of the forward PDB se-
quences Q*R*

n, i.e., l W~Q*R*
n!/l W~Q*R*

(n11)!5d(R)
strictly holds for eachn ~50,1,2, . . . !.

We can rewrite~3.3! as

lWB~Q!d~Q!5Kf , ~3.38!

which shows again the scaling effect ofd21~Q! as in ~3.18!.
This is also a global relationship independent of the se-
quencesQ.

2. Scaling coefficient Kb for the total width of all window bands

We now calculate the total widthLWB
t 5(AP`lWB(A) of

all window bands in the chaotic region, which is the key
point for computing the chaotic measure. Here the summa-
tion should take over all the possible combinations~the
primitive words and their various combinations withR* nk!.
Due to the self-similar structure of the chaotic region, we can
expressLWB

t in the following form, according to the classi-
fication in Sec. II D:

LWB
t 5 (

m50

`

LWB,m , ~3.5!

whereLWB,m is the sum of the widths of all window bands in
the subintervalDm . Once the sumLWB,0 in the subintervalD0
is found, thenLWB,m in other subintervalsDm can be ob-
tained immediately from the similarity.

Calculating LWB,0[(AP`0
lWB(A) in D0, first, taking

A5QP`p , we have, from~3.4!,

B1[ (
QP`p

lWB~Q!'
1

12d21~R! (
QP`p

d21~Q!,1.

~3.6!

Here we expect to calculateLWB
t with merely the convergent

rates; the corrections will be considered in Sec. IV. Second,
taking A5Q1*R*

n1*Q2 with Q1, Q2P`p , then from~3.4!
and ~3.2! we have

B2[ (
Q1P`p

(
Q2P`p

(
n1PZ1

lWB~Q1*R*
n1*Q2!

'F 1

12d21~R!G
2

(
Q1P`p

(
Q2P`p

d21~Q1!d
21~Q2!5B1

2.

~3.7!

Third, by induction, and noting thatB1,1 in ~3.6! guarantees
convergence of the geometric series, we obtain

LWB,0[ (
AP`0

lWB~A!5B11B21•••1Bk1•••

'B11B1
21•••1B1

k1•••5
B1

12B1
. ~3.8!

TABLE I. Numerical data ofd21~Q!, l W~Q!, and the relative
deviation ofd21~Q! from lW~Q!, for the MSS primitive wordsQ of
period p53–7. In the calculation, the width of periodic window
lW~Q! and the convergent rated~Q! are, respectively, computed
from ~2.3! and ~2.5! for the quadratic mapf l(x)512lx2.

p Q d21~Q! l W~Q! u l W2d21u/ l W

3 RL 0.018 100 521 6 0.018 529 152 5 0.023
4 RLL 0.001 018 750 1 0.000 986 964 3 0.032
5 RLRR 0.003 913 201 2 0.004 038 761 4 0.031
5 RLLR 0.000 776 953 0 0.000 778 122 8 0.001 5
5 RLLL 0.000 059 064 5 0.000 058 128 2 0.016
6 RLLRR 0.000 117 539 5 0.000 117 572 3 0.000 28
6 RLLLR 0.000 035 684 1 0.000 035 599 0 0.002 4
6 RLLLL 0.000 003 582 6 0.000 003 561 5 0.005 9
7 RLRRRR 0.000 691 352 0 0.000 694 609 3 0.004 7
7 RLRRLR 0.000 443 696 6 0.000 447 198 5 0.007 8
7 RLLRLR 0.000 098 332 1 0.000 098 482 9 0.001 5
7 RLLRRR 0.000 043 782 1 0.000 043 798 4 0.000 37
7 RLLRRL 0.000 028 324 0 0.000 028 391 9 0.002 4
7 RLLLRL 0.000 015 716 1 0.000 015 689 9 0.001 7
7 RLLLRR 0.000 005 982 2 0.000 005 978 8 0.000 57
7 RLLLLR 0.000 002 051 9 0.000 002 049 7 0.001 1
7 RLLLLL 0.000 000 221 6 0.000 000 221 2 0.001 8
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CalculatingLWB,m in the subintervalDm , from ~2.8! we have

LWB,m[ (
AP`m

lWB~A!5LWB,0/d
m~R!. ~3.9!

Summing up the results over each subinterval, one can ob-
tain finally

LWB
t 5 (

m50

`

LWB,m5
LWB,0

12d21~R!
[KbLWB,0, ~3.10!

where the scaling coefficient
Kb51/[12d21(R)]51.272 53••• . This value ofKb is an
ideal value, which requires the uniform convergence of the
backward ~reversed! PDB sequences R*m*Q, i.e.,
l W~R*m*Q!/l W~R* (m11)

*Q!5d(R) strictly holds for eachm
~50,1,2,•••!.

C. Geometric interpretation
for the YGOTL’s scaling constant mc

Yorke, Grebogi, Ott, and Tedeschini-Lalli~YGOTL!
pointed out in Ref.@8# the scaling behavior of ‘‘windows’’ in
the one-dimensional maps, which has not yet been fully un-
derstood since then. The width of the ‘‘window’’ in that
paper is exactly the width of the ETEC step found by us
@2–4#

l h~Q!5uQ* @L`,RL`#u5l~Q*RL`!2l~QLt~Q!!.
~3.11!

Inside the ETEC step, however, there are various window
bandslWB. There are also the single points corresponding to
a coarse-grained chaotic set such asQ*`chaos~where`chaosis
the set of the chaotic sequences!. According to YGOTL, the
normalized crisis value of ‘‘windows’’ in Ref.@8# is

mc5
l h~Q!

l W~Q!
5

uQ* @L`,RL`#u
uQ* @L`,R`#u

5
9

4
. ~3.12!

The last equality holds within an accuracy of63% @8#. This
value 9

4 can be derived from the uniform compressibility of
the operatorQ* @3#. For the quadratic map,l~L`!521

4,
l~R`!53

4, and l~RL`!52; thus, combining~1.1! and ~1.2!
we can easily have

mc5
u@L`,RL`#u
u@L`,R`#u

5
9

4
. ~3.128!

From~3.128! we give a very clear geometric interpretation of
YGOTL’s scaling constant94, namely, it is a result of the
uniform compression ofQ* operation preserving the topo-
logical entropy.

Moreover, from~3.1! and ~3.12!, a universal relation

l h~Q!d~Q!5 9
4 ~3.13!

approximately holds with at least two significant figures,
which is independent of the sequencesQ. Because of~3.13!,
mc can also be thought as the ETEC step scaling constant.
From ~3.13!, together with ~3.18! and ~3.38!, namely,
l W~Q!d~Q!51 andlWB~Q!d~Q!5Kf , we can see the obvious
compression effect ofd21~Q!, asQ* is a compression opera-

tion. These three relationships clearly show that if we take
d21~Q! as a scaling length, then for any sequencesQ, what-
ever the ETEC stepsl h~Q!, the periodic windowsl W~Q!, or
the window bandslWB~Q!, all can be scaled as constants
respectively.

D. Universality for the positions of superstable points
in periodic windows

1. Universal window scaling ratiogPDB51
for the PDB cascade sequences

The PDB cascade sequences include the main PDB se-
quencesR* n and their compressionsA*R*

n ~n>1, AP`;
see Sec. II D for the definition of̀!. One of the characteris-
tics of the PDB sequences is that they have connected
windows in the bifurcation diagram, i.e.,lr~A*R*

n!
5ll~A*R*

(n11)!. For this type of sequence, we find that in
the periodic windows~ll , lc , lr! of any value ofn ~>1!, the
ratio for the widths of the stable regions on both sides of the
superstable points

gPDB~n!5
lc2l l

l r2lc
5

uR* n* @L`,C#u
uR* n* @C,R`#u

or
uA*R* n* @L`,C#u
uA*R* n* @C,R`#u

~3.14!

is independent of the sequencesA ~i.e., universal forA!.
Noting thatR* n is the zero topological entropy class@2–4#,
its representative is the period-2 windowR* [L

`,R`] ~n51!;
other cascade periodic windowsR* n* [L

`,R`] ~n>2! are
the compressions of the typical period-2 window. For the
quadratic mapl(RR)5l~R`!53

4, l(RC)51, andl(RL)5
5
4; thus we have, from~3.14!,

gPDB5
uR* @L`,C#u
uR* @C,R`#u

5
u@RR,RC#u
u@RC,RL#u

51. ~3.148!

The ratiogPDB51 is within an accuracy of68% and has
been verified by the numerical calculation~see Table II!.
However, we can see thatgPDB(n) values have some minor
numerical deviations from~3.148!, i.e., gPDB(n) slightly de-
pends on n, which comes from the fact that
l W(R*

n)/ l W(R*
(n11))'d(R) ~not strictly5!. This interest-

ing universal scaling ratiogPDB originates from the uniform
compression ofR* n.

TABLE II. Window scaling ratiogPDB5(lc2l l)/(l r2lc) of
the PDB sequences~A* !R* n is universal for different sequencesA.
These values are obtained from the calculation onR* n for the qua-
dratic map. The last column gives the relative deviation ofgPDB
from 1.

n gPDB ugPDB21u

1 1 0
2 1.057 605 51 0.058
3 1.075 997 90 0.076
4 1.079 424 25 0.079
5 1.080 222 86 0.080
6 1.080 386 00 0.080
7 1.080 421 92 0.080
8 1.080 429 49 0.080
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2. Universal window scaling ratiogN51
3

for the non-PDB sequences

For other periodic sequences that are not the PDB cascade
sequences, namely, the sequences that cannot be decom-
posed as being multiplied byR* n from the right, i.e.,AP`
but AÞA8*R*

n ~e.g., A5Q, Q1*R*
n1* •••*Qk , R*

m
*Q!,

we can still define the ratio

gN~A!5
lc~A!2l l~A!

l r~A!2lc~A!
5

uA* @L`,C#u
uA* @C,R`#u

. ~3.15!

On the basis of the compressibility of the operationA* and
noting thatl(C)50 for the quadratic map, we thus have,
from ~1.1! and ~3.15!,

gN5
u@L`,C#u
u@C,R`#u

5
1

3
. ~3.158!

The ratiogN51
3 is within an accuracy of67% and has been

numerically verified. From Table III we can see that the
maximal deviation 7% occurs at the period-3 primitive word
RL, while the deviation for other primitive words is much
smaller than this. Similarly, the maximal deviation for
YGOTL’s constantmc also occurs at the same wordRL @8#.
The Table III data imply that the deviation tends to be
smaller as the periodp and the parameterl of the word
increase. ThegN is an interesting universal scaling ratio that
does not depend on the sequencesA, which is very useful in
practice. For example, when calculating the periodic window
of a sequenceA of very large period with a computer, one
often encounters difficulty in solvingll~A! and lr~A! nu-
merically; however, with the aid of~3.158!, one can easily
obtain the boundaries of the window from the superstable
point lc~A! and the convergent rated~A! as

l l~A!5lc~A!2
1

4
l W~A!5lc~A!2

1

4d~A!
,

~3.16!

l r~A!5lc~A!1
3

4
l W~A!5lc~A!1

3

4d~A!
.

In this section we have presented a series of global scaling
constants, such asmc , gPDB, andgN , that do not depend on
the sequences.

IV. CHAOTIC MEASURE AS THE FUNCTION
OF THE CONVERGENT RATES

OF PERIOD-P-TUPLING BIFURCATIONS

A. Strategy: Describing chaos by periodicity

Periodic motion and aperiodic chaotic motion are two dif-
ferent kinds of motion. Today there is a very deep under-
standing and universal quantitative description for periodic
motion @1,5,10–13,15#; however, this is not the case for the
aperiodic chaotic orbits. Here we take the global result of the
metric universality as our starting point. The periodic se-
quences and the aperiodic sequences form a whole body. The
knowledge of the universality of periodic sequences can help
us realize and understand the behavior of aperiodic se-
quences. The strategy of this section is to take both se-
quences as two sides of the whole body; thus we can calcu-
late one from another.

In Ref. @3# we suggested a classification of all admissible
sequences~words! in the complete topological spaceS2 of
two symbols. All the admissible sequences can be divided
into two large classes:~i! regular periodic sequences and~ii !
aperiodic chaotic sequences, which include the coarse-
grained chaotic sequences of infinite length generated by
limited grammatical rules~such as the eventually periodic
sequences,AB`-type sequences@18#, rl`-type kneading se-
quences@19,20#, and the infinite limits of Fibonacci se-
quences@21#! and the Bernoulli-Chaitin-Ford infinite se-
quences @22,23# that cannot be generated by limited
grammatical rules and are the fine-grained chaos in the sense
of symbolic dynamics.

There is an important question of how the chaotic orbits
~sequences! distribute on the parameter axisl and what the
chaotic measure is. Jakobson@9# proved that there is positive
measure for chaos. Then Wang and Chen@24# employed the
Monte Carlo method on the logistic model with the positive
Lyapunov exponent as a criterion to make a statistical sam-
pling and estimated the chaotic measure to be
Lc50.89360.022~the total measure of chaotic region is nor-
malized to unity!, which shows that the measure of chaotic
orbits~sequences! in the chaotic region is greater than that of
periodic orbits~sequences!.

As we have seen in the above, the periodic sequences
have windows whose distributions on the parameter axisl
form intervals, while this does not hold for the chaotic se-
quences. The chaotic sequences are the single points on the
parameter axisl. Thus we shall obtain chaos by excluding
all the infinitely many periodic windows~or window bands!
in the chaotic regionDc , i.e., the complementary set to all
the window bands represents chaos both in the coarse-grain

TABLE III. Numerical result for the window scaling ratio
gN5(lc2l l)/(l r2lc) of the non-PDB sequences. Here we show
only the values for the MSS primitive wordsQ of periodp53–7 as
examples. The last column gives the relative deviation ofgN from
1
3 .

p Q gN ugN2
1
3u/~

1
3!

3 RL 0.357 299 28 0.072
4 RLL 0.337 446 51 0.012
5 RLRR 0.336 441 89 0.009 3
5 RLLR 0.335 663 97 0.007 0
5 RLLL 0.334 247 21 0.002 7
6 RLLRR 0.333 636 36 0.000 91
6 RLLLR 0.333 620 44 0.000 86
6 RLLLL 0.333 553 67 0.000 66
7 RLRRRR 0.332 777 63 0.001 7
7 RLRRLR 0.334 453 67 0.003 4
7 RLLRLR 0.333 625 70 0.000 88
7 RLLRRR 0.333 555 14 0.000 67
7 RLLRRL 0.333 225 63 0.000 32
7 RLLLRL 0.333 551 00 0.000 65
7 RLLLRR 0.333 392 90 0.000 18
7 RLLLLR 0.333 391 91 0.000 18
7 RLLLLL 0.333 387 83 0.000 16
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and the fine-grain sense. The Lebesgue measure of chaos is
defined as

Lc5
uDcu2LWB

t

uDcu
[12Lp , ~4.1!

whereuDcu is the width of the chaotic region~as the renormal
scale! andLp is the Lebesgue measure of the periodic win-
dows~window bands! on the parameter axis. Since the scal-
ing of periodic windows results in the scaling law for win-
dow bands and these scaling behaviors are related tod, the
chaotic measureLc will be the function of the convergent
ratesd of the periodic sequences.

B. Approximate analytical formula of chaotic measureLc
by using merely the convergent rates

To obtain the chaotic measureLc from ~4.1!, we only
need to finduDcu sinceLWB

t has been given in Sec. III. Be-
cause the widthsuDmu ~m50,1,2, . . . ! of the subintervals
form the Feigenbaum convergent series, i.e.,
uDm11u;uDmu/d(R), the width of the chaotic region is

uDcu5 (
m50

`

uDmu'
uD0u

12d21~R!
. ~4.2!

Therefore, from~3.10!, ~4.1!, and~4.2!, we can use theLWB,0
anduD0u5l(RL`)2l(R*RL

`) of the subintervalD0 to give
the chaotic measure

Lc'12
LWB,0

uD0u
[Lc,0 . ~4.3!

This shows that the measure~Lc! normalized to the whole
chaotic regionDc is the same as that~Lc,0! normalized to the
subintervalD0. This conclusion can be easily extended as

Lc'Lc,0'Lc,1'Lc,2'•••'Lc,m . ~4.4!

Substituting~3.6! and ~3.8! into ~4.3!, we can explicitly re-
write ~4.3! as

Lc'12
(d21~Q!

@12d21~R!2(d21~Q!#uD0u
. ~4.5!

This is an approximate analytic formula of the chaotic mea-
sure Lc . Here we have used the concise notation( for
(QP`p

. SinceuD0u is easy to compute, from~4.5! we can see
that computingLc depends in fact on computing the sum
(l W~Q!'(d21~Q! of the window widths of all the MSS
primitive words. Table IV lists the numerical data of both
(d21~Q! and(l W~Q! for period p53–14. We can see that
they have only a minor discrepancy and the contribution of
the primitive words of large period is extremely small. For
the quadratic mapuD0u50.456 31•••, using ( p53

14 d21~Q!
50.026 46, we can obtainLc'0.9236. If we use
( p53
14 l W~Q!50.026 99 to replace(d21~Q!, thenLc'0.9221

~see Table VII!. Of these two results, the latter, with the use
of (l W~Q!, is of course more exact.

However, it should be indicated that in the calculation of
LWB
t in Sec. III, whatever the sequences of the typeQ*R*

n

considered in computinglWB~Q! or the sequences of the type
R*m*Q considered in computingLWB,m , we have taken the
convergent rated(R)54.669 20•••, while this value can only
be approached for the large values ofn andm. Whenn orm
is small, the convergent rate has some deviation from this
value. In particular, for the cases ofn50,1 andm50,1, the
convergent rates are all smaller than this value. This implies
that the real widths of the window bands are larger than the
previous calculation, so the above calculation can give only
the upper bound of the chaotic measure:L c

u50.9221.

C. Chaotic measureLc by using theoreticalKf and ideal Kb

As mentioned in Sec. III,~3.4! is not accurate. Using~3.3!
instead of~3.4!, we can obtain a better result forLc . This
means that we should take

B15Kf( l W~Q!5Kf(d21~Q!, ~4.6!

LWB
t 5Kb

B1

12B1
~4.7!

TABLE IV. Numerical results of(d21~Q!, (lW~Q!, and the relative deviation of(d21~Q! from (lW~Q!,
for the MSS primitive words of periodp53–14.N denotes the number of the primitive words~windows!
calculated.

p N (d21~Q! (l W~Q! u( l W2(d21u/( l W

3–4 2 0.019 119 271 7 0.019 516 116 8 0.020
3–5 5 0.023 868 490 5 0.024 391 129 2 0.021
3–6 8 0.024 025 296 7 0.024 547 862 0 0.021
3–7 17 0.025 354 755 3 0.025 884 282 7 0.020
3–8 30 0.025 666 473 8 0.026 197 850 1 0.020
3–9 57 0.026 061 435 5 0.026 593 203 6 0.020
3–10 102 0.026 141 695 2 0.026 673 561 7 0.020
3–11 195 0.026 309 323 4 0.026 841 373 3 0.020
3–12 354 0.026 367 573 2 0.026 899 648 4 0.020
3–13 669 0.026 428 525 3 0.026 960 617 8 0.020
3–14 1236 0.026 460 359 1 0.026 989 552 6 0.020
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to replace~3.6! and ~3.10!. Substituting~4.6! and ~4.7! into
~4.1!, we obtain

Lc'12
KbK f(d21~Q!

@12Kf(d21~Q!#uDcu
. ~4.8!

Here we do not simply takeuDcu asKbuD0u since the ratios
uDmu/uDm11u of the convergent sequence$uDmu ~m
50,1,2,•••!% have a minor discrepancy fromd(R).

The parameter value of the PDB accumulation point is
l~R*`!51.401 15••• and we havel~RL`!52, which leads to
uDcu50.598 84••• . Therefore, using the theoretical value of
Kf and the ideal value ofKb , from ~4.8! we can obtain
Lc50.9029. Replacing(d21~Q! by (l W~Q!, we can have a
more exact valueLc50.9009.

D. Correction factors and further improved calculation
of chaotic measureLc

To improve further the calculation ofLc , we should in-
vestigate the detailed processes of convergence for both the
forward PDB sequencesQ*R*

n and thebackwardPDB se-
quencesR*m*Q, respectively.

First, we consider the forward PDB typeQ*R*
n, namely,

examine the calculation of the window band ofQ. Let

dn~R!5 l W~Q*R* ~n21!!/ l W~Q*R* n!. ~4.9!

Then the width of the window band will be

lWB~Q!5 l W~Q!F11 (
n51

`

)
k51

n

dk
21~R!G

[Kf
i lW~Q!5Kf

i d21~Q!. ~4.10!

Here the correction factorK f
i will be improved compared to

the theoretical value ofKf in ~3.3!. In order to giveK f
i , we

calculatedn, j (R) from ~4.9! for all the 30 primitive wordsQj
of period p53–8. Then we take their weighted average
value as dn(R), i.e., dn(R)5( jgn, jdn, j (R), where
gn, j5dn, j (R)/( idn,i(R). Table V lists the values ofdn(R)
for n51–5. Forn>6, usingdn(R)'d(R)54.669 20•••, one
can obtain the limit value ofK f

i (n) as

Kf
i '1.648 46, ~4.11!

which approaches the theoretical value ofKf in ~3.3!.
Next we investigate the backward PDB typeR*m*Q,

namely, consider the compressing in each subintervalDm .
Similarly, let

d̃m~R!5 l W~R* ~m21!*Q!/ l W~R*m*Q!. ~4.12!

Then the total width of all the window bands in the chaotic
region will be

LWB
t 5LWB,0F11 (

m51

`

)
k51

m

d̃k
21~R!G[Kb

i LWB,0.

~4.13!

Similarly, the correction factorK b
i will be improved compar-

ing with the idealKb in ~3.10!. We still take all the 30 primi-
tive wordsQj of period p53–8 to calculated̃m, j (R) from
~4.12! and list their weighted average valuesd̃m(R) in Table
VI ~m51–4!. For m>5, using d̃m(R)'d(R), we have the
limit value of K b

i (m) as

Kb
i '1.377 10, ~4.14!

which approaches the idealKb in ~3.10!.
For a further improved calculation of the chaotic measure

Lc , after the consideration of~4.10!, ~4.11!, ~4.13!, and
~4.14!, we takeK f

i andK b
i to replaceKf andKb in ~3.6!,

~3.10!, and~4.6!–~4.8!. Thus we have

Lc'12
Kb
i K f

i (d21~Q!

@12Kf
i (d21~Q!#uDcu

. ~4.15!

Therefore, from~4.15! we can obtainLc50.8951. Replacing
(d21~Q! by (l W~Q!, we can have a more exact value
Lc50.8929. This coincides with the result by using the
Monte Carlo method in Ref.@24#.

Table VII shows a comparison of the values ofLc calcu-
lated from ~4.5!, ~4.8!, and ~4.15!. Of these three calcula-
tions, ~4.15! gives the best result.

V. FRACTAL PROPERTIES OF THE CHAOTIC SET

As we have described in Sec. II D, the structure of each
subintervalDm in the chaotic region is completely similar.

TABLE V. Weighted average values ofdn(R) and the values of
K f

i (n)511( j51
n P k51

j d k
21(R).

n dn(R) K f
i (n)

1 2.007 85 1.498 05
2 4.237 71 1.615 57
3 4.552 70 1.641 39
4 4.646 05 1.646 94
5 4.663 99 1.648 14

TABLE VI. Weighted average values ofd̃m(R) and the values
of K b

i (m)511( j51
m P k51

j d̃ k
21(R).

m d̃m(R) K b
i (m)

1 3.256 62 1.307 07
2 5.589 47 1.362 00
3 4.628 50 1.373 87
4 4.683 40 1.376 41

TABLE VII. Comparison of the chaotic measureLc calculated
from formulas~4.5!, ~4.8!, and~4.15!. The data in the first line are
obtained directly from the formulas. The data in the second line are
obtained with replacing(d21~Q! by (l W~Q! in the three formulas,
which are better than the first line. Of these three methods,~4.15!
gives the best result.

Chaotic measureLc ~4.5! ~4.8! ~4.15!

using(d21~Q! 0.9236 0.9029 0.8951
using(l W~Q! 0.9221 0.9009 0.8929
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Therefore, from the bi-Lipschitz transformation theorem
@25,4#, one can conclude that the chaotic set in eachDm after
excluding all the periodic window bands inDm has the same
fractal dimensionD0. For this reason, we will concentrate
our consideration on only the subintervalD0. After excluding
all the infinitely many periodic window bands
lWB~Q!5K f

i lW~Q!, we can obtain the chaotic set inD0. Ac-
cording to the previous discussion, this is a fractal set of
positive measure and infinitely many scales, a point set com-
pletely disconnected and nowhere dense inD0 on the param-
eter axis. SinceLcÞ0, this chaotic set should theoretically
have the Hausdorff dimensionDH51 @25#. It should be in-
dicated that this chaotic set is thereal chaotic set, while that
chaotic set in Ref.@4# is not the real one because in Ref.@4#
the contributions of the coarse-grained chaotic sequences
contained in each ETEC step have been ignored. Here all the
periodic window bands have been excluded, so both the
coarse-grained and the fine-grained chaotic sequences are in-
cluded in the chaotic set.

To save the CPU time we will mainly use the direct
method of Chhabra and Jensen@26# rather than the indirect
method of Halseyet al. @27# to calculate the singularity spec-
trum f ~a! ~Fig. 2! and the generalized dimensionDq ~Fig. 3!.
Although it is impossible to exclude infinitely many periodic
window bands for the numerical calculation, in fact, one can
obtain a very good numerical approach after excluding all
the 1236 window bands of the basic periodp53–14. Table
VIII lists some numerical values of that special sense. We
can see that the fractal dimensionD0 is very close to the
theoretical result ofDH51 ~in general,D05DH!.

VI. DISCUSSION

From the above we can see the significance of the con-
vergent ratesd. For the quadratic mapf l(x)512lx2, not
only can the analytic expressions of the periodic windows
and the window bands be given byd but the measure of the
chaotic orbits that are completely different from the periodic
orbits can also be given explicitly byd. In particular, we
further understand that a series of characteristic scaling con-

stants such asmc , gPDB, andgN , even the convergent rated
itself, originate from the uniform geometric compressibility
of the DGP* operation dominated by preserving the equal
topological entropy. Moreover, the singularity spectrum and
the generalized fractal dimension of the chaotic set are cal-
culated. We thus promoted the understanding to the relation
between the chaotic motion and the periodic motion.

It should be noted that in our calculation, the relation
~3.1!, of crucial importance, is valid for the quadratic map
f l(x)512lx2. If the map is replaced by other maps of a
quadratic maximum such as the logistic map
f m(x)5mx(12x) or f n(x)5n sinpx, then ~3.1! will need
some modifications. For example, as the parameter transfor-
mation betweenf m(x) and f l(x) is m511A114l, for the
logistic map there will be a function transformation between
l W~Q! andd21~Q!, i.e., l W~Q!5F„d21~Q!…. In this case,~3.1!
and other relationships in the calculation of the chaotic mea-
sure would not be as simple as that for the quadratic map;
however, the method of treatment is similar. It is worth not-
ing that for such maps of a quadratic maximum, the ETEC
step scaling constantmc5

9
4 and the window scaling ratios

gPDB51 andgN51
3 for the superstable positions in the peri-

odic windows are still universal.
Strictly speaking, the universal window scaling ratios

gPDB and gN divide all the periodic sequences into two
classes: one consists of the PDB cascade sequencesR* n and
A*R*

n ~AP`! to be called̀ PDB and the other of non-PDB
sequences to be called̀N ; each of these two classes has
infinitely many sequences. Thus three scaling ratios

uQ* @L`,RL`#u
uQ* @L`,R`#u SQP ø

m50

`

R*m*`pD ,
uQ* @L`,C#u
uQ* @C,R`#u

~QP`PDB!,

uQ* @L`,C#u
uQ* @C,R`#u

~QP`N!

FIG. 2. Curve of the singularity spectrumf ~a! for the chaotic
set in the subintervalD0.

FIG. 3. Curve of the generalized dimensionDq for the chaotic
set in the subintervalD0.
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form, respectively, three very small intervals@2.17, 2.25#, @1,
1.09#, and @0.33, 0.36#, namely, bound infinite sets of real
numbers. According to the classical Bolzano-Weierstrass
theorem@28#, of course, the scaling ratiosmc , gPDB, andgN
would be limit points of the three infinite sets, respectively.
In addition, the last two scaling ratios characterize the global
structure of all the periodic windows. This result directly
indicates the global regularity of negative Lyapunov expo-
nents. In general, Lyapunov exponents are difficult to deal
with analytically for they lack explicit expressions@29#. By
gPDB andgN , the global regularity of three important posi-
tions (l l ,lc ,l r) of Lyapunov exponents~0,2`,0! in peri-
odic windows is presented; thus the structural pattern of the
curve of negative Lyapunov exponents is displayed clearly.
It is very useful to construct the global expressions of the

curve of characteristic exponent. We believe that the results
reveal the global regularities independent of the sequences
~words! and make a substantial advancement of metric and
scaling universalities; this would be significant for our fur-
ther construction work on the global thermodynamic formal-
ism of chaotic dynamical systems.
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