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The Derrida-Gervois-Pomeau composition of the seque@@ess a topological conjugate compression
operation. On the basis of the numerical calculation for the quadraticfi{ap=1—Ax?, it is found thatQ*
has the uniform compression rat® 1(Q), i.e., the reciprocal of the universal convergent rate. A series of
global scaling behaviors relating to the periodic windows, the window bands, and the steps of equal topological
entropy clas§ETECQ) are revealed to be independent of the sequences. In particular, the geometric interpreta-
tion for the Yorke-Grebogi-Ott-Tedeschini-Lalli normalized crisis value of “windows=3 is given clearly
through the scaling for the ETEC steps. The universal positions of superstable points in all the periodic
windows are determined by the window scaling ratigs,g=1 for the period-doubling bifurcatiofPDB)
sequences anﬂ,\,:% for the non-PDB sequences. The approximate analytic formula of the chaotic measure is
obtained by employing the convergent ratesf periodic sequences. The singularity spectrum and the gener-
alized fractal dimension of the chaotic set are also calculated. These results imply that the metric universality
of the periodic sequences may be a very good complete description for the topological space of two symbols.
[S1063-651%96)05609-1

PACS numbsg(s): 05.45+b, 03.20+i, 05.20.Gg, 05.70.Jk

I. INTRODUCTION parameter values(W) and\(Q*W) can be calculated by the
Kaplan algorithm[7], which is the standard method of ap-
plying the operation of contracting fixed point on the param-
eter axis for arbitrary periodic word4/ and Q. Because of
Rhe property of accumulation and contractionxobperation

The discovery of metric universalities is a milestone of
nonlinear sciencél]. These metric universalities originate
from the generalized Feigenbaum renormalization-grou

ﬁ’zu:ttelx(i)rgaasr:adolﬁst:;%?;gig;:?n?reo!;?/niiyihvgeir:tc:aurcgl tg;ng(ra‘r\]/i;:s[&e]' the norm| | will be contracted with the word changing
B . . .~ from W, ,to Q*W , and simultaneously with the increasing
[2—4], which has cleared the concept of topological equiva of the length of word, so we always hawéQ)<1; thus(1.1)
lence class, i.e., the step of equal topological entropy Clastseflects the compres’sion effect @k operation i,n then F;a-
(ETEOQ) generated by the topological conjugate opera€en rameter space. For the quadratic mfgx) =1—\x?, 7(Q)
of Derrida, Gervois, and Pome#h,6] [see Sec. Il A for the takes the simplle form ' 7
definition of the Derrida-Gervois-Pome@dDGP) * composi-
tion rule]. On the basis of this, we further reveal in this paper
some global and fine regularities and deepen the understand-
ing of the universal constant &Q) reflects not only the
convergent rate for the periquitupling bifurcationQ*" (p
is the period of sequend®) but also, more important, the
compression ratio of the topological conjugate operafen
In general, we can define the compression ratiQ) of the
topological conjugate operatid@* as

7(Q)=6"4(Q) 1.2

with a high precision. Because of the simplicity @f2), we
will take the quadratic mag,(x)=1—\x* as the actual
metric model in this paper.

The devil’s staircase of topological entropy indicates that
there are two important intervals: one is of zero entropy cor-
responding to the main period-doubling bifurcati@@DB)
cascade sequenc&" and the other is of nonzero entropy

|Q*[W1,Wo][=n(Q)[[Wy1,W,]|, (1.)  corresponding to other sequences exd@pt. Our research
here indicates further that in these intervals there still exist
whereQ*[W,, W,|=[Q*W,, Q*W,] and|| is the paramet- the following three kinds of characteristic intervals and their
ric metric or norm for the set of wordsequences[2—4],  corresponding global scaling phenomertg: the periodic
i.e., [[Wyq, W,][=NWy)—NMW,), with A(W,) and\(W,) two  window |,,(Q), (i) the window band5(Q), and (iii) the
parameter values corresponding to the characteristic wordSTEC step ,(Q). Each of these three characteristic intervals
that denote the boundariéhe minimalW, and the maximal is formed by the same topological conjugate compression
W,) of the set of words considered. It is known that theoperationQ=*, but for the different characteristic boundary
sequences. Thus we will have a series of characteristic con-
stants to describe the global scaling behaviors. Among these
*Mailing address: Department of Physics, Yunnan Institute of thecharacteristic constants, the ETEC step scaling congiant
Nationalities, Kunming, Yunnan 650031, China. 2 should be emphasized, which is juke normalized crisis
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value of “windows” found by Yorke, Grebogi, Ott, and wheret is the parity inverse operator defined hy=R,

Tedeschini-Lalli{8]; however, at that time, they did not give R'=L, andt(Q)=t"@, with J(Q) the R-parity number of

an accurate interpretation; we will present the clear geomesequence) (the number of appearances of the symRdh

ric meaning. We also obtain two different window scaling Q). It is obvious thatt>”*'=t, t?"=1; here!| denotes the

ratios, i.e.,yppg=1 for the PDB cascade sequences aQe identity operator.

1 for the non-PDB sequences, which determine the universal In Refs.[2] and[3] we have proved that the DGP com-

positions of superstable points in all the periodic windows.position Q* of arbitrary superstable periodic sequences

These scaling constants fully reflect the property of the uni{MSS sequencess a topological conjugate operation that

form compression o+ operation on the whole parameter preserves the topological entropy; namely, independent of

axis. whateverW is (W e W, the set of all admissible sequences
As an interesting result of the uniform compression, thewith the minimal L® and the maximalRL*), an ETEC

width |, of the periodic window is proportional to the com- Q*W={Q*W|W W} is formed under this operation, with a

pression ratiod 1, the reciprocal of the convergent rate; for constant topological entropk(Q). We have also obtained

some specific maps such as the quadratic rhgman even that the composition operato®* compresses the space

be normalized to unity bys . This is an important global [L*,RL*] of all admissible sequences to an ETEC that ex-

scaling phenomenon, which leads to a significant and anéibits a step in the entropy pldt—\, with the width (Le-

lytic formula: the chaotic measure describing the irregularitybesgue measuré,(Q)=|Q*[L*,RL"]|.

highly unifies the universal convergent rates describing the

periodic regularity. This is the final aim of this paper; it B. Periodic window and convergent rate

provides analytic evidence for the problem that chaos has a

positive measur9, 10] We call such three periodic sequences

In this paper we will first introduce the notation and some(AL'™,AC AR™®) in the ascending order a periodic win-
basic concepts in Sec. II. In Sec. Il we discuss the globafloW labeled byA, whereACf(g,)A\C) dt((aAr;QDEes the super-
scaling behaviors and present the universality for the posist""?lAe perlodtu/i séquence aAl "= (ALTY)"=AxL" and
tions of the superstable points in all the periodic windows. IAR'W=(AR'™)”=AxR* are called the lower and the up-
Sec. IV the approximate analytic formula of the chaotic meaPer sequenced 2,14 of AC, respectively. On the parameter
sure is obtained by employing the convergent rates of th@Xis, the parameter values corresponding to the window se-
periodic sequences. In Sec. V we calculate the singularitfuénces are denoted by, (A¢,A;). As both the lower and
spectrum and the generalized fractal dimension of the chal@ upper sequences correspond to the parameter intervals,

otic set, which are improved compared to those in Rgf.  from now on we shall specially denotg and A, as the

Finally, in Sec. VI we give a short discussion. parameter value_s of the left gljd the right boundaries of the
window that satisfy the stability conditiofiT;f;(x;)|=1.
Il. NOTATION AND BASIC CONCEPTIONS Thus the W|dt_h <_)f the periodic window of sequent®n the
parameter axis is

A. DGP * composition rule and ETEC . .
. . - Iw(A)=|[AL"M AR =|A*[L*,R”
From the symbolic dynamids0-12 it is known that an w(A) =l lI=lAs ]

orbit can be described by a kneading symbolic sequence =N (A)—N(A). (2.3
(word) K=K Ky« K-+t
For the periode-tupling bifurcation sequencA*" (p is
L <0 the period ofA) [12,15, it is well known that the widths of
K.={C for fi =0 i=1,2,... Kk ... . (2.1 adjacent windows, or the distances between the superstable
' » e points, form the universal convergent rai@) for any one-

R >0, dimensional maps of quadratic maximum, i.e.,
As a convention, an aperiodic sequence of infinite length is L w(A*") A (A*M) =\ (A*M)
usually called an infinite word, while a periodic sequenced(A)= lim I (AXTD) = lim N (AFT D)y (A* (D)
K=(K;K,---K,)* of period k, with the repeating byte n—oe IW n—oo B :
KK, ---K, of finite length as its characteristic, is called a (2.4

finite word, which is usually represented by its repeating
byte, i.e.,K=K;K,---K,. In particular, a periodic sequence

with a symbolC is referred to as a superstable periodic se- N(A* (MFDY ) (A*M)
quence (word) [10] or Metropolis-Stein-Stein(MSS) se- S8(A)= lim N ,CA*“‘“) Y Z*(nﬂ) : (2.9
quence 11]. nee Nl )= Ae( )

Now we introduce the DGR composition rule[5]. Let o ) )
two Superstab|e periodic Sequenceg:bteQz.. QqC and The two def|n|t|oni2.4) and (25) are eql.“Valent in the nu-
S=S,S,---S.C. Then theith symbol P; of the compound Mmerical calculations. They are not only two convergent sub-

sequencé®=Q*S can be written a§13] sequences that approach the same accumulation point
M(A*7), as told by Feigenbauii], Hao[12], and Chang and
Qj if i mod (g+1)=j#0 McCown[15], but also the important result of uniform com-

) — pression. In the numerical calculatiorf,5) is more conve-
Pi=\ it i=k(q+1) (2.2 nient because. is very easy to compute by the word-lifting
C if i=(g+1)(s+1), technique[12].
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than or equal to 3 is denoted by, . All these primitive
words are located in the subintenvs]. Except the primitive
words, there are also the compound sequefwesdy of the
form Qu* R* 1% - - -+ Q,* R* "kx Q, ¢ in Ap; thus

90={Q,Q*R*"tx - - -x Qu* R*"* Qy 1|Qe 9, ,Qe p ,;

|
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I: 4o where Z* is the set of positive integers. Obviously, the
1 1 1 various  possible  combinations, such  asQ*/,
AL®) O AR AR) ARHRL)  ARL®) Q' R*Mx...xQy'k, are included inpy. It should be indi-
cated that though there are also the associated Feigenbaum
PDB sequenced*R*" (A € py, N=1) in the subinterval,,
we do not include them i, since we only need the basic
sequences to calculate the window band sequenged*"
from (2.6). For other subintervald,, with m=1, we have
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FIG. 1. Schematic diagram for the self-similar classification of
the basic sequences.

C. Window band

The window band of sequen@erefers to the total of the
windows of A and all the associated Feigenba(RDB cas- Pm=R*M™pg. 2.9
cade sequences of the ford*R*" with n=1,2, ... .These . L
windows are connected on the parameter axis, which mean1erefore, the set of all the basic MSS sequer(pes;;lodlc
that the upper sequence of any window in the window bandnd quasmenodbcexcept the mawl EDB sequendes” and
coincides with the lower sequence of the next adjacent winthe associated PDB sequendesR™ " is
dow, leaving no room for other sequences to get in between, w
i.e., A (A*R*M)=)\,(A*R* "* 1)) holds from(2.3). The win- p=Upn. (2.9
dow band is the result that the operatidn compresses the m=0
whole connected region of the main PDB casc&dé into ) ) o
the chaotic region. Noting that the sequenéesR*" have The structure of each submtgrvﬂln is completely S|m_|lar
the same convergent rat§R)=4.66920-- as the main and the cardinal of each sg}, is also the same. The differ-

PDB sequences R*" [16,17, i.e. |y(A*R*"/  €nce betweewn,.; andpy is only a compression mafgs.
lw(A*R* " 1D)_, §R), therefore, on the parameter axis, the SO When considering the chaotic measure we shall concen-
width of the window band is trate mainly on the treatment of the sgfin A,; other sets
pm N A, (Mm=1) can be treated immediately from the simi-
il larity.
lwa(A)= 25 Tw(A*R*") = |Ax[L*,R* ]|
n=e lll. GLOBAL SCALING BEHAVIORS
i Iw(A) AND UNIVERSAL SUPERSTABLE POSITIONS
~IW(A)nE0 S RI= =5 TR (29 IN PERIODIC WINDOWS

A. Window- é relation
The widthlyg of the window band will play an important  we know from(2.3) and(2.4) that the definitions for the

role later in the calculation of the chaotic measure. window widthsl,,(Q) of the periodic sequenced and the
convergent rates\Q) of the periodp-tupling bifurcations
D. Self-similar structure in the chaotic region Q*" are, respectively,
To compute the chaotic measure in Sec. IV we need to lw(Q)=]Q*[L”,R"]|=7(Q)|[L",R"]l,
study the total widtH_\,5 of all the periodic windowgwin-
dow bandg This requires the knowledge about the structure . |Q* "+ [L”,R™]
of the chaotic region. 8(Q)= lim

. o . : Lo QDS R
In the bifurcation diagram, we can classify thasic pe- " |

riodic and quasiperiodic sequences in Fig. 1 according to th?hrough the numerical calculation for the quadratic map
MSS order[11] and the structural similarity of sequences. f,(x)=1—\x2, we find that there exists a very simple in-

The chaotic r_egiorA;[R*"ﬁEﬁ]l)can be divided into @ yerse proportion relation between thésee Table), i.e.,
series of subintervald ,=[R *RL”,R*™RL"] (m

=0,1,2 ...); the set of the basic periodic and quasiperiodic lwW(Q)=6"1Q), (3.2

sequences corresponding to each subintetyais denoted

as g,. The widths of subintervals are obviously the which holds approximately with at least two significant fig-

convergent series|Agl,|Aq]|A,, ... JAyl, ... satisfying  ures. This implies the important concept that the DGP com-

iMoo Al | A s 1] = (R). positionQ* for any sequenc® is a compression operation
The MSS primitive words that cannot be decomposed by3] with the uniform compression ratié” %(Q). It will play

the DGP* composition rule are of most significance for our an important role in the calculation of the chaotic measure.

calculation. The set of all primitive words of period greater The relation(3.1) is consistent with(1.1), because from
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TABLE I. Numerical data of6 (Q), Iw(Q), and the relative

deviation of§~%(Q) from I,(Q), for the MSS primitive word€) of

period p=3-7. In the calculation, the width of periodic window
Iw(Q) and the convergent rat§(Q) are, respectively, computed

from (2.3) and(2.5) for the quadratic map, (x)=1—AX>.

(1.0, 1w(Q=6YQIIL",R7]|, while \L")=-3}

AR*)=% results in that|[L*,R"]|=1. If we rewrite (3.1)

into the form

lw(Q)6(Q)=1,

then we can see the obvious scaling effecof(Q). Obvi-

and

(3.7)

that 1/1— 6 Y(R)]=1.272 53--, which is considerably dif-
ferent from K; in (3.3) becausel(Q)/l\y(Q*R)~2 [see
51(R) in Table V] has a large deviation froA(R), which

will  be improved in Sec. IV. Therefore,
1[1-6 YR)]=1.272 53 is anideal value of K;, which
requires the uniform convergence of the forward PDB se-

p Q 51Q ¥(0)) w=8"w  quences Q*R*", i.e., Iyy(Q*R* ")l (Q*R* " D)=§R)

3 RL 0.0181005216 0.0185291525  0.023 strictly holds for eactn (=0,1,3...).

4 RLL 0.0010187501 0.000986 9643  0.032 We can rewrite(3.3) as

5 RLRR 0.003 9132012 0.004 0387614 0.031 /

5 RLLR  0.0007769530 0.0007781228  0.0015 lwe(Q)(Q) =K, (3.3)

5 RLLL 0.0000590645 0.0000581282  0.016 which shows again the scaling effect 8f1(Q) as in(3.1').

6 RLLRR 0.0001175395 0.0001175723  0.00028 This is also a global relationship independent of the se-
6 RLLLR 0.0000356841 0.0000355990 0.002 4 quence.

6 RLLLL 0.000 0035826 0.0000035615 0.0059

7 RLRRRR 0.0006913520 0.000694 609 3 0.004 7 2. Scaling coefficient K for the total width of all window bands

7 RLRRLR 0.000443 6966 0.0004471985  0.007 8 We now calculate the total widthlyg=S . ,lws(A) of

7 RLLRLR 0.0000983321 0.0000984829  0.0015 5 window bands in the chaotic region, which is the key
7 RLLRRR 0.0000437821 0.0000437984  0.00037 point for computing the chaotic measure. Here the summa-
7 RLLRRL 0.0000283240 0.0000283919  0.0024  tjon should take over all the possible combinaticise

7 RLLLRL 0.0000157161 0.0000156899  0.0017  primitive words and their various combinations Wit "«).

7 RLLLRR 0.0000059822 0.0000059788  0.00057 Due to the self-similar structure of the chaotic region, we can
7 RLLLLR 0.0000020519 0.0000020497  0.0011  expressL\ in the following form, according to the classi-

7 RLLLLL 0.0000002216 0.0000002212 0.0018 fication in Sec. Il D:

©

Li/vszmzo Lwe,ms (3.5

whereL g 1, is the sum of the widths of all window bands in
the subintervald,. Once the sunh.g ( in the subintervaly,

is found, thenLyg , in other subintervals\;,, can be ob-
tained immediately from the similarity.

ously, it is a global relationship independent of the sequences Calculating Lwg ¢=2ac, lws(A) in A, first, taking

Q. _ A=Qegp,, we have, from3.4),
For the compound sequences, there is the general approxi-

mation 8Q*Q,)~8Q,)&Q,) [6], so we have
Iw(Q1*Q2)~ 36 1Q1) 8 HQy).

It should be noted tha®(R*"*Q)~d"(R)&(Q) holds for
large n; however, it does not work well fon=1. We will
consider the corrections for this in Sec. IV.

> s Q<1

1
Bi= > lws(Q= 1-5 (R o=
- (3.6

Er-

(3.2

Here we expect to calculatd,z with merely the convergent
rates; the corrections will be considered in Sec. IV. Second,
taking A= Q* R*"1* Q, with Q;, Q,e¢,,, then from(3.4)

B. Scaling behaviors of window bands and(3.2) we have

1. Scaling coefficient K for the window band
From(2.6) and(3.1) the width of the window band can be
written as

lwe(Q)=6"HQI[L",R**]|=K;5 H(Q),

where theheoreticalvalue of the coefficienk;=1.651 15--
because\(L”)=—0.25 and\(R**)=1.401 15-- . Using the
approximation in(2.6), we can also expredg,g(Q) as

5 Q)
|WB(Q)~T(SR)-

Bo= > > X lwe(QuR*M"xQy)

Qievnr Qepr njez’

1 2
~[m} 2 X 5MQus Q=B

Qiep, Qoep,

3.3
3.7

Third, by induction, and noting th&;<1 in (3.6) guarantees
convergence of the geometric series, we obtain

(3.9
Lweo= 20 lwa(A)=By+ Byt - +Byt- -
€pg
Of these two expressiong3.3) is more accurate thafB.4).
Here we show how to give,s(Q) with merely the conver- ~B;+B2+.- + B+ =

gent rates in3.4). The approximate expressidd.4) implies 1-B;’

By

(3.8
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CalculatingL g , in the subinterval\,,, from (2.8) we have TABLE Il. Window scaling ratioyppg=(Ac—N|)/(A;—\) of
the PDB sequencdé*)R*" is universal for different sequencés
These values are obtained from the calculatiorR5A for the qua-

j— — m
LWB,m_AEEW lwe(A)=Lwgo/ 6™(R). (3.9 dratic map. The last column gives the relative deviationyefg
" from 1.
Summing up the results over each subinterval, one can ol5
tain finally n YPDB | vpoB—1|
® L 1 1 0
LYe= > Lwe m:# =KoLwgso, (3.10 2 1.057 605 51 0.058
m=o " 1=6R) ' 3 1.075 997 90 0.076
where the scaling coefficient 4 1.079.424 25 0.079
Ky=1/[1— 5 Y(R)]=1.272 53~ . This value ofK, is an > 1.080 222 86 0.080
. : - . 6 1.080 386 00 0.080
ideal value, which requires the uniform convergence of the 7 1.080 421 92 0.080
backward (reversedl PDB sequences R*™+Q, i.e., ' '
8 1.080 429 49 0.080

| W(R* ™ Q) (R* M Dx Q)= §R) strictly holds for eactm
(:0!112; : .)'

o ) tion. These three relationships clearly show that if we take
C. Geometric interpretation 5 X(Q) as a scaling length, then for any sequenQesvhat-
for the YGOTL's scaling constant s, ever the ETEC stepk,(Q), the periodic windows(Q), or
Yorke, Grebogi, Ott, and Tedeschini-LaliyGOTL) the window banddg(Q), all can be scaled as constants
pointed out in Ref[8] the scaling behavior of “windows” in  respectively.
the one-dimensional maps, which has not yet been fully un-

derstood since then. The width of the “window” in that D. Universality for the positions of superstable points
paper is exactly the width of the ETEC step found by us in periodic windows
2-4
[2-4] 1. Universal window scaling ratioyppg=1
Ih(Q)=|Q*[L*,RL™]| =A(Q*RL")—\(QLYQ), for the PDB cascade sequences
311 The PDB cascade sequences include the main PDB se-

* N H H * N .
Inside the ETEC step, however, there are various Windovﬁuerg:eSR” Da;ndt;]heér goTpress;)|ogA*R f th(nzr}, Aetp’.
bandsl . There are also the single points corresponding tots_ee ?th PSE& e definition gf h rt]etrc: ?10 arac erls-t d
a coarse-grained chaotic set SuChQES)¢pa0s(Whereg naosiS ics ot the sequences is that ey have connecte

. : indows in the bifurcation diagram, i.e.\ (A*xR*")
the set of the chaotic sequengesccording to YGOTL, the win *(n+1) . e .
- ‘o P " : =N(A*R ). For this type of sequence, we find that in
normalized crisis value of “windows” in Ref[8] is the periodic windows, , A, \,) of any value of (1), the
IW(Q) |Q*[L*,RL*]| 9 ratio for the widths of the stable regions on both sides of the

'%:'w(Q)_ O [’ =7 (3.12 superstable points

* N 0 * N 0
The last equality holds within an accuracy ©8% [8]. This Yeoa(N) = Aem M - L C ’EN r |AxR* ™ [L ’E“
value ¢ can be derived from the uniform compressibility of A=A [RF™[C,R*]| 7 |A*R*™[C,R7]|
the operatorQ+ [3]. For the quadratic map\(L*)=—1%, (3.19
AMR*)=2, and A\(RL*)=2; thus, combining(1.1) and (1.2)
we can easily have

is independent of the sequencAs(i.e., universal forA).
Noting thatR*" is the zero topological entropy clagg—4,
I[L*,RL*]| 9 its representative is the period-2 windé [L*,R™] (n=1);
’“C:|[L°°—R°°]|:Z' (3.12)  other cascade periodic windowg*"+[L*,R"] (n=2) are
' the compressions of the typical period-2 window. For the
quadratic map\(RR)=A(R*)=2, A(RC)=1, and\(RL)=

From(3.12) we give a very clear geometric interpretation of
( Jweg y g P 2 thus we have, front3.14),

YGOTL'’s scaling constanf, namely, it is a result of the
uniform compression 0Q+* operation preserving the topo- IR*[L*,C]| [[RRRC]|
logical entropy. = L =

YpoB= =7 = =
Moreover, from(3.1) and(3.12), a universal relation PPEUIR+[C,R*]|  [[RC,RL]]|

1. (3.14)

In(Q)8(Q)=2 (3.13 The ratio yppg=1 is within an accuracy oft8% and has
been verified by the numerical calculatigsee Table I\
approximately holds with at least two significant figures,However, we can see thatpg(n) values have some minor
which is independent of the sequen€gsBecause 0f3.13), numerical deviations front3.14), i.e., yppg(n) slightly de-
e can also be thought as the ETEC step scaling constanpends on n, which comes from the fact that
From (3.13, together with (3.1) and (3.3), namely, IW(R*”)/IW(R*(“+1))~5(R) (not strictly =). This interest-
[W(Q)8(Q)=1 andl,5(Q)&Q)=K;, we can see the obvious ing universal scaling ratigppg originates from the uniform
compression effect o5 }(Q), asQx is a compression opera- compression oR*".
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TABLE IIl. Numerical result for the window scaling ratio 1 1
yn=Mc—N)/(N,—\) of the non-PDB sequences. Here we show M(A)=N(A)— 2 Iw(A)=N(A)— 15(A)
only the values for the MSS primitive word3 of periodp=3-7 as (A)
examples. The last column gives the relative deviationypfrom (3.19
1
3 3
A (A)=N(A)+ 7 Tw(A)=hc(A)+ -
p Q W =3 4 45(A)
2 E:: 0.357299 28 0.072 In this section we have presented a series of global scaling
L 0.337446 51 0.012 constants, such gs., yppg, and y, that do not depend on
5 RLRR 0.336 441 89 0.009 3 the sequences.
5 RLLR 0.335 663 97 0.0070
5 RLLL 0.334 247 21 0.002 7
6 RLLRR 0.333 636 36 0.00091 IV. CHAOTIC MEASURE AS THE FUNCTION
6 RLLLR 0.333 620 44 0.000 86 OF THE CONVERGENT RATES
6 RLLLL 0.33355367 0.000 66 OF PERIOD-P-TUPLING BIFURCATIONS
; itiiis 822421 Z;; 23 888;2 A. Strategy: Describing chaos by periodicity
7 RLLRLR 0:333 625 70 0:000 88 Periodic motion and aperiodic chaotic motion are two dif-
7 RLLRRR 0.333 555 14 0.000 67 ferent kinds of motion. Today there is a very deep under-
7 RLLRRL 0.333 225 63 0.000 32 standing and universal quantitative description for periodic
- RLLLRL 0'333 551 00 0.000 65 motion[1,5,10-13,1% however, this is not the case for the
- RLLLRR 0'333 392 90 0.000 18 aperiodic chaotic orbits. Here we take the global result of the
' ' metric universality as our starting point. The periodic se-
; E::::::::E gggg 22; 2; 8'888 ig guences and the aperiodic sequences form a whole body. The

knowledge of the universality of periodic sequences can help
us realize and understand the behavior of aperiodic se-
quences. The strategy of this section is to take both se-
guences as two sides of the whole body; thus we can calcu-
late one from another.

For other periodic sequences that are not the PDB cascade |n Ref.[3] we suggested a classification of all admissible
sequences, namely, the sequences that cannot be decoggguenceswords in the complete topological spad of
posed as being multiplied biR*" from the right, i.e.Aep  two symbols. All the admissible sequences can be divided
but A#A’*R*" (e.g., A=Q, Q*R*"*---*Q, R*™Q),  into two large classesi) regular periodic sequences afid
we can still define the ratio aperiodic chaotic sequences, which include the coarse-

grained chaotic sequences of infinite length generated by
(3.15 limited grammatical rulegsuch as the eventually periodic

sequencesiB”-type sequenced 8], pA~-type kneading se-

guences[19,2(0, and the infinite limits of Fibonacci se-
On the basis of the compressibility of the operatlonand  quences[21]) and the Bernoulli-Chaitin-Ford infinite se-
noting that\(C)=0 for the quadratic map, we thus have, quences[22,23 that cannot be generated by limited
from (1.1) and(3.19), grammatical rules and are the fine-grained chaos in the sense
of symbolic dynamics.

There is an important question of how the chaotic orbits
(sequencesdistribute on the parameter axisand what the
chaotic measure is. Jakobs@] proved that there is positive
The ratioyy=3 is within an accuracy of-7% and has been measure for chaos. Then Wang and C[@#] employed the
numerically verified. From Table Ill we can see that theMonte Carlo method on the logistic model with the positive
maximal deviation 7% occurs at the period-3 primitive word Lyapunov exponent as a criterion to make a statistical sam-
RL, while the deviation for other primitive words is much pling and estimated the chaotic measure to be
smaller than this. Similarly, the maximal deviation for £,=0.893+0.022(the total measure of chaotic region is nor-
YGOTL's constantu, also occurs at the same woRL [8]. malized to unity, which shows that the measure of chaotic
The Table Il data imply that the deviation tends to beorbits(sequencesn the chaotic region is greater than that of
smaller as the periogp and the parametex of the word periodic orbits(sequences
increase. They, is an interesting universal scaling ratio that As we have seen in the above, the periodic sequences
does not depend on the sequendesvhich is very useful in  have windows whose distributions on the parameter axis
practice. For example, when calculating the periodic windowform intervals, while this does not hold for the chaotic se-
of a sequencé\ of very large period with a computer, one quences. The chaotic sequences are the single points on the
often encounters difficulty in solving,(A) and \,(A) nu-  parameter axid.. Thus we shall obtain chaos by excluding
merically; however, with the aid of3.15), one can easily all the infinitely many periodic window&r window bands
obtain the boundaries of the window from the superstablén the chaotic regiom\., i.e., the complementary set to all
point \;(A) and the convergent ratA) as the window bands represents chaos both in the coarse-grain

2. Universal window scaling ratioyy =3
for the non-PDB sequences

AN (A [ArL7C]
WA= A —re(A) A CR[

[L"cy 1

')’N:m—g. (3.15)
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TABLE IV. Numerical results o6 %(Q), Zlw(Q), and the relative deviation a5 XQ) from Zlw(Q),
for the MSS primitive words of periop=3-14.N denotes the number of the primitive wor@sindows
calculated.
p N =5 XQ) Slw(Q) IZlw—26 Y/=ly
3-4 2 0.0191192717 0.019516116 8 0.020
3-5 5 0.023 868 490 5 0.024 3911292 0.021
3-6 8 0.024 025 296 7 0.024 5478620 0.021
3-7 17 0.025 354 755 3 0.025 884 282 7 0.020
3-8 30 0.025 666 473 8 0.026 197 850 1 0.020
3-9 57 0.026 061 4355 0.026 593 203 6 0.020
3-10 102 0.026 141 695 2 0.026 673 561 7 0.020
3-11 195 0.026 309 323 4 0.026 841 373 3 0.020
3-12 354 0.026 367 573 2 0.026 899 648 4 0.020
3-13 669 0.026 428 525 3 0.026 960 617 8 0.020
3-14 1236 0.026 460 359 1 0.026 989 552 6 0.020
and the fine-grain sense. The Lebesgue measure of chaos is 26 YQ)
defined as Lo~1— - - . (4.5
¢ [1-6R)-26 (Q)]A|
p b, a.1)
¢ A P ' This is an approximate analytic formula of the chaotic mea-

where|A,| is the width of the chaotic regiofas the renormal

sure L.. Here we have used the concise notat®nfor
Zqeyp_ - SincelAq is easy to compute, frortd.5) we can see

scalg and L, is the Lebesgue measure of the periodic win-that computingC. depends in fact on computing the sum
dows(wmdow bands on the parameter axis. Since the scal-21,,(Q)~=6 Q) of the window widths of all the MSS
ing of periodic windows results in the scaling law for win- primitive words. Table IV lists the numerical data of both

dow bands and these scaling behaviors are relate tioe
chaotic measure; will be the function of the convergent
ratesé of the periodic sequences.

B. Approximate analytical formula of chaotic measure £,
by using merely the convergent rates

To obtain the chaotic measur®, from (4.1, we only
need to findA,| sinceL},z has been given in Sec. lIl. Be-
cause the widthgA,| (m=0,1,2...) of the subintervals
form the Feigenbaum convergent series,
|Am+ 1~ |AL/&R), the width of the chaotic region is

|Ao|

T_]_(R). (4.2

|Ac|: E |Am|%
m=0

Therefore, from3.10), (4.1), and(4.2), we can use theg o
and|Ag =\ (RL”) —\(R+*RL”) of the subinterval\, to give
the chaotic measure

I-WB 0

L~1- |A|

=Lcpo. 4.3

This shows that the measuté€.) normalized to the whole
chaotic regiom. is the same as that ;) normalized to the
subintervalA,. This conclusion can be easily extended as

E ﬁc 0~ ['c 17~ »Cc i

~Lem- (4.9

Substituting(3.6) and (3.8) into (4.3), we can explicitly re-
write (4.3) as

36 %Q) and =1,(Q) for period p=3-14. We can see that
they have only a minor discrepancy and the contribution of
the primitive words of large period is extremely small. For
the quadratic map|Ag=0.456 3%--, using =255 Q)
=0.026 46, we can obtainL ~0.9236. If we use
352 3lw(Q)=0.026 99 to replacéﬁ‘l(Q) then £,~0.9221
(see Table VI). Of these two results, the latter, W|th the use
of 21(Q), is of course more exact.

However, it should be indicated that in the calculation of
Ly in Sec. lll, whatever the sequences of the typeR*"

i.e.considered in computlnlg,\,B(Q) or the sequences of the type

R*™«Q considered in computingyg n, We have taken the
convergent raté(R) =4.669 20--, while this value can only

be approached for the large valuesnaindm. Whenn or m

is small, the convergent rate has some deviation from this
value. In particular, for the cases n¥0,1 andm=0,1, the
convergent rates are all smaller than this value. This implies
that the real widths of the window bands are larger than the
previous calculation, so the above calculation can give only
the upper bound of the chaotic measufg!=0.9221.

C. Chaotic measureL. by using theoretical K; and ideal Ky,

As mentioned in Sec. 11;3.4) is not accurate. Usin(B.3)
instead of(3.4), we can obtain a better result fdl.. This
means that we should take

B1=KZlwW(Q=KZs XQ), 46
B
Le=Ko 75 4.7
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TABLE V. Weighted average values éf(R) and the values of TABLE VI. Weighted average values am(R) and the values

Ki(n)=1+3=7_,1T}_; 5, (R). of Kh(m)=1+3M 1T}, (R).
n 8:(R) K'(n) m n(R) Kb(m)
1 2.007 85 1.498 05 1 3.256 62 1.307 07
2 423771 1.61557 2 5.589 47 1.362 00
3 4552 70 1.641 39 3 4.628 50 1.373 87
4 4.646 05 1.646 94 4 4.683 40 1.376 41
5 4.663 99 1.648 14

n(RI=IyW(R* M D Q)/1(R*™Q). (4.1
to replace(3.6) and (3.10. Substituting(4.6) and (4.7) into
(4.2), we obtain Then the total width of all the window bands in the chaotic

region will be
KpKi2871(Q)

Lo~1— — . (4.8) = m
1-K;26 A ~ _ i
(Ko QA Lie=Lwsd 1+ 3 T1 3, 1(R)]EK'DLWB,0.
Here we do not simply tak@\.| asK,|Ay since the ratios (4.13
|[Anl/|Amsi] of the convergent sequencd|A,| (m _
=0,1,2;--)} have a minor discrepancy frod(R). Similarly, the correction factoK , will be improved compar-

The parameter value of the PDB accumulation point ising with the ideaK,, in (3.10. We still take all the 30 primi-
AMR**)=1.401 15-- and we have\(RL")=2, which leads to tive wordsQ; of period p=3-8 to calculates,, ;(R) from
|A;|=0.598 84-- . Therefore, using the theoretical value of (4.12 and list their weighted average valugg(R) in Table
K; and the ideal value oK,, from (4.8 we can obtain VI (m=1-4). For m=5, using §,(R)~ 6(R), we have the
£.=0.9029. Replacin@ s %Q) by =I,,(Q), we can have a limit value of K ,(m) as

more exact valueC,=0.9009. _
Ky~ 1.377 10, 4.19

D. Correction factors and further improved calculation

of chaotic measurer, which approaches the ideK}, in (3.10.

For a further improved calculation of the chaotic measure
To improve further the calculation of., we should in- L., after the consideration 0f4.10, (4.11, (4.13, and
vestigate the detailed processes of convergence for both ttié.14), we takeK; and K}, to replaceK; and K, in (3.6),
forward PDB sequence®*R*" and thebackwardPDB se- (3.10, and(4.6)—(4.8). Thus we have
qguencesR* ™+ Q, respectively. o
First, we consider the forward PDB tyi@R*", namely, et KLKi=8 1(Q)
examine the calculation of the window band@f Let c [1-KI=s XQ)A ]

(4.19

_ (n—1)
Sn(R)=Iw(Q* R* ™)/l y(Q*R* ™). (4.9 Therefore, from(4.15 we can obtain’.=0.8951. Replacing
>6 Q) by =l,(Q), we can have a more exact value
L:,=0.8929. This coincides with the result by using the
e 1 Monte Carlo method in Ref24].
_ -1 Table VII shows a comparison of the values®f calcu-
lwe(Q)=1w(Q) 1+n§1 kll 9 (R) lated from (4.5), (4.8), and (4.15. Of these three calcula-

) ) tions, (4.19 gives the best result.
=Ki{lw(Q)=K{s XQ). (4.10

Then the width of the window band will be

. P . V. FRACTAL PROPERTIES OF THE CHAOTIC SET
Here the correction factdf ; will be improved compared to

the theoretical value dk; in (3.3). In order to giveK}, we As we have described in Sec. Il D, the structure of each
calculates,, ;(R) from (4.9 for all the 30 primitive word€Q, subintervalA,, in the chaotic region is completely similar.
of period p=3-8. Then we take their weighted average

value as §,(R), i.e., 5n(R):E|’gnj5nj(R)a where TABLE VII. Comparison of the chaotic measur& calculated

Unj=6nj(R)/Z;5,;(R). Table V lists the values 08,(R) from formulas(4.5), (4.8), and(4.15. The data in the first line are
for n=1-5. Forn=6, using&,(R) ~ 6(R) =4.669 20--, one obtained directly from the formulas. The data in the second line are

can obtain the limit value oK }(n) as obt_ained with replacin@b*l.(Q) py Zlw(Q) in the three formulas,
which are better than the first line. Of these three meth@GH45
Klf%1648 46, (41]) g|VeS the beSt I’esult.
which approaches the theoretical valuekgfin (3.3). Chaotic measuré. “.5 “8 (419
Next we investigate the backward PDB tyf™«Q, using=s Q) 0.9236 0.9029 0.8951
namely, consider the compressing in each subintetyal  using=I,,(Q) 0.9221 0.9009 0.8929

Similarly, let
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FIG. 2. Curve of the singularity spectrufifa) for the chaotic FIG. 3. Curve of the generalized dimensiby for the chaotic
set in the subinterval,. set in the subinterval,.

Therefore, from the bi-Lipschitz transformation theoremstants such ag., yppg, andyy, even the convergent rate
[25,4], one can conclude that the chaotic set in eAghafter  itself, originate from the uniform geometric compressibility
excluding all the periodic window bands i, has the same of the DGP* operation dominated by preserving the equal
fractal dimensionD,. For this reason, we will concentrate topological entropy. Moreover, the singularity spectrum and
our consideration on only the subintervg. After excluding  the generalized fractal dimension of the chaotic set are cal-
all the infinitely many periodic window bands culated. We thus promoted the understanding to the relation
lwe(Q)=K H/(Q), we can obtain the chaotic set . Ac-  between the chaotic motion and the periodic motion.
cording to the previous discussion, this is a fractal set of It should be noted that in our calculation, the relation
positive measure and infinitely many scales, a point set com3.1), of crucial importance, is valid for the quadratic map
pletely disconnected and nowhere densagron the param-  f,(X)=1—\x%. If the map is replaced by other maps of a
eter axis. SinceC.#0, this chaotic set should theoretically quadratic maximum such as the logistic map
have the Hausdorff dimensidb, =1 [25]. It should be in-  f,(X)=ux(1—x) or f (x)=vsinm7x, then (3.1 will need
dicated that this chaotic set is theal chaotic set, while that some modifications. For example, as the parameter transfor-
chaotic set in Refl4] is not the real one because in Rgf]  mation betweerf ,(x) andf,(x) is u=1+1+4\, for the
the contributions of the coarse-grained chaotic sequencdegistic map there will be a function transformation between
contained in each ETEC step have been ignored. Here all tHg,(Q) and 5 1Q), i.e.,lw(Q=F(s5 XQ)). In this case(3.1)
periodic window bands have been excluded, so both thand other relationships in the calculation of the chaotic mea-
coarse-grained and the fine-grained chaotic sequences are gure would not be as simple as that for the quadratic map;
cluded in the chaotic set. however, the method of treatment is similar. It is worth not-
To save the CPU time we will mainly use the directing that for such maps of a quadratic maximum, the ETEC
method of Chhabra and Jens#6] rather than the indirect step scaling constant,=3 and the window scaling ratios
method of Halset al.[27] to calculate the singularity spec- yepg=1 andyy=3 for the superstable positions in the peri-
trum f(e) (Fig. 2) and the generalized dimensidy, (Fig. 3). odic windows are still universal.
Although it is impossible to exclude infinitely many periodic ~ Strictly speaking, the universal window scaling ratios
window bands for the numerical calculation, in fact, one canyppg and vy divide all the periodic sequences into two
obtain a very good numerical approach after excluding alclasses: one consists of the PDB cascade sequé&iceand
the 1236 window bands of the basic peripet3—14. Table A*R*" (Aeg) to be calledpppg and the other of non-PDB
VIII lists some numerical values of that special sense. Wesequences to be callgg; each of these two classes has
can see that the fractal dimensi@n, is very close to the infinitely many sequences. Thus three scaling ratios
theoretical result oD, =1 (in general,D,=Dy).

——— Qe UR ™y
VI. DISCUSSION |Q*[L",R”]|

m=0

|Q*[L",RL7]| ( ”

From the above we can see the significance of the con-
vergent ratess. For the quadratic map, (x)=1—\x?, not |Q*[L™,C]|
only can the analytic expressions of the periodic windows m (Qeppop),
and the window bands be given Bbut the measure of the
chaotic orbits that are completely different from the periodic .
orbits can also be given explicitly by. In particular, we |Q+[L”.C]|

| (Qepn)

further understand that a series of characteristic scaling con- |Q*[C,R"]
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TABLE VIII. Fractal property of the chaotic set iA,.

Method of Chhabra and Jensg26] Method of Halseyet al. [27]
f(a(0))=D,=0.9858 D(,=0.9830
f(a(1))=a(1)=D,=0.8180 D,=0.8401

Qax= o —2)=D_,,=2.1910
pin=0a(+2)=D ,,,=0.4964

form, respectively, three very small intervas17, 2.25,[1,  curve of characteristic exponent. We believe that the results
1.09], and[0.33, 0.36, namely, bound infinite sets of real reveal the global regularities independent of the sequences
numbers. According to the classical Bolzano-Weierstras$words and make a substantial advancement of metric and
theorem[28], of course, the scaling ratiqs., yppg, andyy  scaling universalities; this would be significant for our fur-
would be limit points of the three infinite sets, respectively.ther construction work on the global thermodynamic formal-
In addition, the last two scaling ratios characterize the globalsm of chaotic dynamical systems.

structure of all the periodic windows. This result directly
indicates the global regularity of negative Lyapunov expo-
nents. In general, Lyapunov exponents are difficult to deal
with analytically for they lack explicit expressiof29]. By This work was supported in part by the National Basic
vepg @nd vy, the global regularity of three important posi- Research Projec¢Nonlinear Scienceof China, the National
tions (\; ,\¢,\,) of Lyapunov exponent§0,—»,0) in peri-  Natural Science Foundation of China, and the Applied Basic
odic windows is presented; thus the structural pattern of th&esearch Foundation of Yunnan Province. We thank Xu-
curve of negative Lyapunov exponents is displayed clearlySheng Zhang and Xiao-Dong Liu for their useful discus-
It is very useful to construct the global expressions of thesions.
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